리트코드 : 1934. Confirmation Rate
문제
Table: Signups
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
+----------------+----------+
user_id is the column of unique values for this table.
Each row contains information about the signup time for the user with ID user_id.
Table: Confirmations
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
| action | ENUM |
+----------------+----------+
(user_id, time_stamp) is the primary key (combination of columns with unique values) for this table.
user_id is a foreign key (reference column) to the Signups table.
action is an ENUM (category) of the type ('confirmed', 'timeout')
Each row of this table indicates that the user with ID user_id requested a confirmation message at time_stamp and that confirmation message was either confirmed ('confirmed') or expired without confirming ('timeout').
The confirmation rate of a user is the number of 'confirmed' messages divided by the total number of requested confirmation messages. The confirmation rate of a user that did not request any confirmation messages is 0. Round the confirmation rate to two decimal places.
Write a solution to find the confirmation rate of each user.
Return the result table in any order.
The result format is in the following example.
Example 1:
Input:
Signups table:
+---------+---------------------+
| user_id | time_stamp |
+---------+---------------------+
| 3 | 2020-03-21 10:16:13 |
| 7 | 2020-01-04 13:57:59 |
| 2 | 2020-07-29 23:09:44 |
| 6 | 2020-12-09 10:39:37 |
+---------+---------------------+
Confirmations table:
+---------+---------------------+-----------+
| user_id | time_stamp | action |
+---------+---------------------+-----------+
| 3 | 2021-01-06 03:30:46 | timeout |
| 3 | 2021-07-14 14:00:00 | timeout |
| 7 | 2021-06-12 11:57:29 | confirmed |
| 7 | 2021-06-13 12:58:28 | confirmed |
| 7 | 2021-06-14 13:59:27 | confirmed |
| 2 | 2021-01-22 00:00:00 | confirmed |
| 2 | 2021-02-28 23:59:59 | timeout |
+---------+---------------------+-----------+
Output:
+---------+-------------------+
| user_id | confirmation_rate |
+---------+-------------------+
| 6 | 0.00 |
| 3 | 0.00 |
| 7 | 1.00 |
| 2 | 0.50 |
+---------+-------------------+
Explanation:
User 6 did not request any confirmation messages. The confirmation rate is 0.
User 3 made 2 requests and both timed out. The confirmation rate is 0.
User 7 made 3 requests and all were confirmed. The confirmation rate is 1.
User 2 made 2 requests where one was confirmed and the other timed out. The confirmation rate is 1 / 2 = 0.5.
문제 풀이
MySQL
WITH TEMP AS (
SELECT USER_ID, ROUND(COUNT(IF(ACTION='CONFIRMED',1,NULL))/COUNT(*),2) AS rate
FROM CONFIRMATIONS
GROUP BY USER_ID
)
SELECT S.user_id, COALESCE(T.rate,0) AS confirmation_rate
FROM SIGNUPS AS S
LEFT JOIN TEMP AS T ON T.user_id = S.user_id
Pandas
import pandas as pd
def confirmation_rate(signups: pd.DataFrame, confirmations: pd.DataFrame) -> pd.DataFrame:
joined = pd.merge(signups, confirmations, how='left', left_on='user_id', right_on='user_id')
grouped = joined.groupby('user_id').agg(
confirmation_rate=('action', lambda x: round(sum(x=='confirmed')/len(x),2))
).reset_index()
return grouped
- groupby에서 lambda x의 인수는 group DataFrame으로 들어오니까, 여기서 연산해주면 된다.
- apply에서 lambda x의 인수는 row DataFrame으로 들어오니까 차이를 인지하고 lambda 작성.
코멘트
댓글