리트코드 : 3220. Odd and Even Transactions
문제
Table: transactions
+------------------+------+
| Column Name | Type |
+------------------+------+
| transaction_id | int |
| amount | int |
| transaction_date | date |
+------------------+------+
The transactions_id column uniquely identifies each row in this table.
Each row of this table contains the transaction id, amount and transaction date.
Write a solution to find the sum of amounts for odd and even transactions for each day. If there are no odd or even transactions for a specific date, display as 0.
Return the result table ordered by transaction_date in ascending order.
The result format is in the following example.
Example:
Input:
transactions table:
+----------------+--------+------------------+
| transaction_id | amount | transaction_date |
+----------------+--------+------------------+
| 1 | 150 | 2024-07-01 |
| 2 | 200 | 2024-07-01 |
| 3 | 75 | 2024-07-01 |
| 4 | 300 | 2024-07-02 |
| 5 | 50 | 2024-07-02 |
| 6 | 120 | 2024-07-03 |
+----------------+--------+------------------+
Output:
+------------------+---------+----------+
| transaction_date | odd_sum | even_sum |
+------------------+---------+----------+
| 2024-07-01 | 75 | 350 |
| 2024-07-02 | 0 | 350 |
| 2024-07-03 | 0 | 120 |
+------------------+---------+----------+
Explanation:
For transaction dates:
2024-07-01:
Sum of amounts for odd transactions: 75
Sum of amounts for even transactions: 150 + 200 = 350
2024-07-02:
Sum of amounts for odd transactions: 0
Sum of amounts for even transactions: 300 + 50 = 350
2024-07-03:
Sum of amounts for odd transactions: 0
Sum of amounts for even transactions: 120
Note: The output table is ordered by transaction_date in ascending order.
문제 풀이
MySQL
SELECT transaction_date, SUM(IF (AMOUNT%2=1,AMOUNT,0)) AS ODD_SUM, SUM(IF (AMOUNT%2=0,AMOUNT,0)) AS EVEN_SUM
FROM transactions
GROUP BY transaction_date
ORDER BY 1 ASC
Pandas
import pandas as pd
def sum_daily_odd_even(transactions: pd.DataFrame) -> pd.DataFrame:
grouped = transactions.groupby('transaction_date').agg(
odd_sum = ('amount', lambda df: df[transactions['amount']%2==1].sum()),
even_sum = ('amount', lambda df: df[transactions['amount']%2==0].sum())
).reset_index()
grouped.sort_values('transaction_date', inplace=True)
return grouped
- group by + lambda sum
- groupby 이후 lambda로 받는 객체가 DataFrame이라 x로 표현하는거 보다 df로 표현하는게 더 좋은 것 같다.
- apply 시 lambda로 받을 때는 row가 들어오므로 x대신 row로 표현하는 습관 들이기.
코멘트
댓글