본문 바로가기

Data Visualization16

[Seaborn] 4. violin plot [Seaborn] 4. violin plotseaborn 바이올린 플롯사용할 데이터from sqlalchemy import create_engineimport numpy as npimport pandas as pdn = 300data = { '국어': np.round(np.random.normal(75, 10, size=n).clip(50, 100), 1), '영어': np.round(np.random.normal(72, 12, size=n).clip(50, 100), 1), '수학': np.round(np.random.normal(70, 15, size=n).clip(50, 100), 1), '성별': np.random.choice(['남', '여'], size=n), '반'.. 2024. 11. 15.
[Seaborn] 3. boxplot [Seaborn] 3. boxplotseaborn 박스플롯사용할 데이터from sqlalchemy import create_engineimport numpy as npimport pandas as pdn = 300data = { '국어': np.round(np.random.normal(75, 10, size=n).clip(50, 100), 1), '영어': np.round(np.random.normal(72, 12, size=n).clip(50, 100), 1), '수학': np.round(np.random.normal(70, 15, size=n).clip(50, 100), 1), '성별': np.random.choice(['남', '여'], size=n), '반': np.ra.. 2024. 11. 15.
[Seaborn] 2. histplot [Seaborn] 2. histplotseaborn 히스토그램사용할 데이터from sqlalchemy import create_engineimport numpy as npimport pandas as pdn = 300data = { '국어': np.round(np.random.normal(75, 10, size=n).clip(50, 100), 1), '영어': np.round(np.random.normal(72, 12, size=n).clip(50, 100), 1), '수학': np.round(np.random.normal(70, 15, size=n).clip(50, 100), 1), '성별': np.random.choice(['남', '여'], size=n), '반': np... 2024. 11. 15.
[Seaborn] 1. scatterplot [Seaborn] 1. scatterplotseaborn 산점도사용할 데이터from sqlalchemy import create_engineimport numpy as npimport pandas as pdn = 300data = { '국어': np.round(np.random.normal(75, 10, size=n).clip(50, 100), 1), '영어': np.round(np.random.normal(72, 12, size=n).clip(50, 100), 1), '수학': np.round(np.random.normal(70, 15, size=n).clip(50, 100), 1), '성별': np.random.choice(['남', '여'], size=n), '반': np.. 2024. 11. 14.